
INTRODUCTION
Major depressive disorder (MDD) is a leading cause 

of disability. It is associated with the highest disabili-
ty-adjusted life year (DALY) value among all diseases 
and disorders, placing a significant burden on soci-
ety (Ferrari, 2010). Thus, new advances in treatment 
methods based on the pathogenesis of MDD are 
strongly required. However, the biological mecha-
nisms of MDD are incompletely understood (Ménard, 
2015). Historically, the monoamine hypothesis has 
been the major theory of depression. It postulates a 
deficiency in serotonin (5-HT) or noradrenaline (NA) 
neurotransmission in the brain. Findings in patients 
with depression that support the monoamine hypoth-
esis include several lines of supporting evidence (Bel-
maker, 2008). Available antidepressant medications, 
which largely target monoamine pathways, are effec-
tive. However, the classical monoamine hypothesis 
is simplistic; it does not explain the temporal delay 
in the therapeutic action of antidepressants (Racag-

ni, 2008). If antidepressants work according to the 
monoamine hypothesis, they should be rapidly effec-
tive, but antidepressants generally need 2–4 weeks to 
have a therapeutic effect on depressive symptoms. 
Moreover, up to 30% of patients with MDD fail to 
achieve remission despite multiple treatment trials 
(Rush, 2007). Hence, identification of novel patho-
physiological pathways other than monoamine defi-
ciency that are relevant to MDD is heavily required to 
reveal neurobiological targets for the development of 
new medications. 

Research over the past three decades has sug-
gested that inflammatory processes are involved in 
the onset and maintenance of MDD. The inflamma-
tory hypothesis has been proposed (Smith, 1991; 
Maes, 1993; Sluzewska, 1996). In recent years, the 
association between inflammation and MDD has 
been investigated with growing interest (Vogelzangs, 
2013; Dantzer, 2007; Kopschaina, 2017; Kim, 2007; 
Leonard, 2012). 
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Abstract
Major depressive disorder (MDD) is a leading cause of disability. It is asso-
ciated with the highest disability-adjusted life year (DALY) value among all 
diseases and disorders, placing a significant burden on society. Thus, new 
advances in treatment methods based on the pathogenesis of MDD are 
strongly required. Historically, the monoamine hypothesis has been the ma-
jor theory of depression, but it is too simplistic. It cannot explain the latency 
of response in the therapeutic action of antidepressants, and up to 30% 
of depressed patients fail to achieve remission despite multiple treatment 
trials. Over the past three decades, research has suggested that inflam-
matory processes are involved in the onset and maintenance of MDD; the 
inflammatory hypothesis has been proposed. This review will highlight the 
association between inflammation and the nervous system and the role of 
inflammation in the pathogenesis of MDD, including whether chronic stress 
(e.g., psychosocial stress) activates the inflammatory response, what kind 
of upstream neurogenic processes translate physiologic stress into inflam-
matory responses, communication pathways, or mechanisms by which the 
peripheral immune system can influence the brain and behavior; and the 
pathophysiology by which inflammation affects the nervous system and 
leads to MDD. Once cytokine signals reach the brain, they can interact with 
every pathophysiologic domain relevant to mood regulation, which includes 
neurotransmitter function, hypothalamic–pituitary–adrenal (HPA) axis activity, 
neural plasticity, and alteration of brain circuitry. Recent data demonstrating 
the importance of cytokines as biomarkers will also be presented.
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Although mood disorders may have complex 
pathophysiology and heterogeneous etiologies, 
increased inflammation is thought to be involved 
in the disease process and contributes to discrete 
symptomology, at least in some subsets of patients. 
However, the underlying mechanisms of inflam-
mation and depressive symptoms remain far from 
being fully elucidated. This review highlights the 
association between inflammation and the nervous 
system as well as the role of inflammation in the 
pathogenesis of MDD. Recent data demonstrating 
the importance of cytokines as biomarkers are also 
presented. 

INFLAMMATORY FEATURES OF MDD
The link between MDD and inflammation was 

initially suggested in the macrophage hypothesis 
(Smith, 1991), which states that pro-inflammatory 
cytokines produced by activated macrophages play 
a role in many symptoms of depression. Nowadays, 
mounting data indicate a link between inflamma-
tion and the pathogenesis of MDD. First, in clinical 
studies, inflammatory features of MDD have been 
observed in medically ill and medically healthy pa-
tients with MDD. Compared with individuals without 
MDD, levels of pro-inflammatory cytokines are ele-
vated in the peripheral blood and cerebrospinal fluid 
(CSF) of patients with MDD (Raison, 2006; Joshua, 
2014). Moreover, treatment with antidepressants 
attenuates cytokine production and action (Barden, 
1999; Castanon, 2002; Schiepers, 2005). Plasma 
levels of some cytokines that are higher during on-
going depression normalize after recovery (Kenis, 
2002). Second, the link between inflammation and 
MDD is supported epidemiologically by the high 
rate of clinical psychological changes that resemble 
the characteristics of depression such as anxiety, 
fatigue, psychomotor slowing, anorexia, cognitive 
dysfunction, and sleep impairment, observed during 
pro-inflammatory conditions like obesity, myocardial 
infarction, ongoing hepatitis C therapy that activates 
the immune system, and autoimmune disease (Van 
Gool, 1999; Weinblatt, 1999; Musselman, 2001; 
Raison, 2005; Bogna, 2019; Marrie, 2017). Third, 
many human and animal studies have demonstrat-
ed that the activation of peripheral innate cytokine 
pathways, including both peripheral innate immune 
challenge and acute or chronic stress, leads to in-
creased pro-inflammatory cytokine production and 
decreased neurotrophic support and neurogenesis 
in brain areas important to behavior and cognition, 

which eventually induce psychiatric symptoms 
(Dantzer, 2001; Koo, 2008; Ben Menachem-Zidon, 
2008; Dowlati, 2010; Barrientos, 2003; Wu, 2007; 
Rodrigues, 2018). Fourth, neurobiological and im-
munological mechanisms underlying how inflam-
mation targets neurotransmitters and neurocircuitry 
to change behavior have been elucidated (Felger, 
2017).

Psychiatric symptoms induced by inflammatory 
stimuli mentioned above, referred  to as sickness 
behavior, share many overlapping features with 
symptoms of depression (Kent,1992). These symp-
toms can be reliably reproduced by the administra-
tion of pro-inflammatory cytokines separately or by 
treatment with cytokine inducers such as endotoxin 
and lipopolysaccharide (LPS) or infectious agents 
such as Salmonella typhi and Bacille Calmette-Guer-
in (BCG) vaccine, an attenuated form of Mycobac-
terium bovis (Yirmiya, 1999; Simen, 2006; Brydon, 
2008; Harrison, 2009a, 2009b; O’Connor, 2009). 
When LPS is administered peripherally, cognitive im-
pairment and increased hippocampal concentrations 
of tumor necrosis factor α (TNF-α) and interleukin 1β 
(IL-1β) occur, which are associated with decreased 
hippocampal expression of brain-derived neuro-
trophic factor (BDNF) and its receptor, tyrosine ki-
nase B, as well as reduced hippocampal neurogen-
esis (Dantzer, 2001; Wu, 2007). Further supporting 
the notion that pro-inflammatory cytokines are the 
key mediators of sickness behavior, administration 
of cytokine antagonists such as IL-1 receptor an-
tagonist (IL-1ra) or anti-inflammatory cytokines such 
as interleukin 10 (IL-10) can block the behavioral 
effects of treatment with IL-1β, LPS, or both in lab-
oratory rodents (Kent, 1992; Bluthe, 1995; Avitsur, 
1997; Dantzer, 2008). 

PRO-INFLAMMATORY CYTOKINES AS 
POTENTIAL BIOMARKERS OF MDD 

The heterogeneous nature of MDD requires ob-
jective characterization, including assessment of 
symptoms, severity, and treatment response, for 
identifying subclasses of MDD (Schmidt, 2011). 
However, clinical features alone are not sufficient to 
guide precise decision-making regarding medica-
tions suitable for each subtype of MDD. Therefore, 
biomarkers are needed to facilitate MDD characteri-
zation. Blockade of cytokines by antibodies specific 
for interleukin 6 (IL-6) or TNF-α that do not cross 
the blood–brain barrier (BBB) has been shown to re-
duce depressive symptoms in patients with medical 
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illnesses, including rheumatoid arthritis, psoriasis, 
and cancer, as well as in patients with MDD (Sun, 
2017; Abbott, 2015; Tyring, 2006). These findings 
indicate that peripheral inflammatory responses may 
serve as biomarkers and clues to the immunological 
mechanisms of inflammation in MDD.

Regarding biomarkers, TNF-α and IL-6, which 
mediate the innate immune response, have been 
reported to be elevated in MDD. They appear to 
be biomarkers in MDD. C reactive protein (CRP) 
has also been found to be elevated in MDD (Zorilla, 
2001; Howren, 2009; Dowlati, 2010). There are some 
inconsistent findings regarding IL-1β (Dowlati, 2010) 
and various other cytokines (Dahl, 2014). 

An association between inflammatory markers and 
individual depressive symptoms such as fatigue, 
cognitive dysfunction, and impaired sleep have been 
described (Meyers, 2005; Motivala, 2005; Bower, 
2002). As to treatment responsiveness, a substantial 
proportion of patients with MDD are treatment-resis-
tant to antidepressants (Bschor, 2012; Rush, 2006). 
Patients with treatment-resistant depression (TRD) 
have significantly higher serum levels of soluble 
IL-6 receptor (sIL-6R) than patients in remission. By 
contrast, serum levels of IL-6 and TNF-α are simi-
lar in patients with TRD and patients in remission. 
Therefore, sIL-6R may be a useful biomarker for the 
identification of treatment-resistant MDD (Yamasa-
ki, 2019). On the other hand, CRP was increased in 
association with TRD associated with other clinical 
manifestations in MDD, including obesity, vegetative 
symptoms of fatigue and sleep disturbance, state 
anxiety, and a history of childhood adversity (Cham-
berlain, 2019). 

PERIPHERAL CYTOKINE RESPONSE TO 
PERSISTENT STRESS 

Even though the inflammatory process is asso-
ciated with the pathophysiology of MDD, nascent 
inflammatory processes secondary to evolving 
medical pathologies, especially in presumably med-
ically healthy individuals, remain to be considered. 
Sources of immune activation that may contribute to 
increased inflammation in psychiatric patients who 
are otherwise medically stable include sleep distur-
bance, diet, increased gastrointestinal permeability, 
obesity, and other lifestyle factors such as smok-
ing (Berk, 2013). However, MDD is often related to 
the normal emotions of sadness and bereavement. 
Nowadays the most significant causal agent of MDD 
is chronic social stress (Kendler, 1999). Historically, 

classic severe states of depression often have no 
external precipitating cause (Kuhn, 1958), albeit it 
is difficult to distinguish depression with psycho-
social precipitating events from other types (Wake-
field, 2007). Therefore, the next question is whether 
chronic stress (e.g., psychosocial stress) involved in 
the occurrence of MDD activates the inflammatory 
response in the periphery and brain. Supporting the 
association between stress and an inflammatory re-
sponse, increased expression of pro-inflammatory 
cytokines was observed in the brains and spleens 
of rats with sickness behavior that were exposed 
to chronic stress (You, 2011). In humans, peripheral 
blood mononuclear cells from healthy volunteers 
exposed to public speaking and a mental arithmetic 
stressor had a significant increase in transcription 
factor nuclear factor κB (NF-κB) DNA binding (Bier-
haus, 2003). NF-κB and IL-6 responses to psycho-
social stress have been shown to be exaggerated 
in patients with MDD, consistent with findings that 
depressive symptoms are associated with amplified 
IL-6 responses to antigenic challenge (Pace, 2006; 
Glaser, 2003). Furthermore, chronic stress, including 
caregiving, marital discord, and perceived stress, is 
associated with increases in the acute phase protein 
CRP as well as IL-6 and other inflammatory medi-
ators (McDade, 2006; Kiecolt-Glaser, 2005; Miller, 
2008). Of note, adults who were maltreated as chil-
dren have increased peripheral blood CRP levels 
compared with adults who had not been maltreated 
as children (Danese, 2007).

The next question is how neural sensitivity to psy-
chosocial stress relates to inflammatory responses. 
In other words, what kind of upstream neurogenic 
processes translate physiologic stress into inflam-
matory responses? These processes can close the 
theoretical gap between stress and its influence on 
immune function. 

First, research has shown that psychosocial stress 
(McEwen, 1998) in animals and humans is perceived 
in the emotion-related forebrain regions of the cor-
ticolimbic system (neurocircuitry related to threat or 
anxiety) including the amygdala; anterior cingulate 
cortex (ACC), especially the dorsal ACC (dACC); an-
terior insula; and periaqueductal gray. Interestingly, 
the dACC has been shown to play an important role 
in error detection and conflict monitoring (Carter, 
1998). Increased activity in this brain region has 
been shown to be associated with high trait anx-
iety, neuroticism, obsessive-compulsive disorder, 
and bipolar disorder (Eisenberger, 2004). Recently, 
psychosocial stress signals from the emotion-re-
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lated forebrain regions were revealed to activate a 
vesicular glutamate transporter 1–positive glutama-
tergic pathway from the dorsal peduncular cortex 
and dorsal tenia tecta (DP/DTT) to the dorsomedial 
hypothalamus (DMH), a hypothalamic autonomic 
center (Kataoka, 2020). The DP/DTT–DMH pathway 
appears to constitute a psychosomatic connection 
through which stress and emotions affect the auto-
nomic and behavioral motor systems.

The next mechanism is stress-induced activation 
of peripheral immune responses by the central ner-
vous system (CNS). The immune system is under the 
direct control of the autonomic nerves. Activation 
of the sympathetic nervous system (SNS) leads to 
the release of NA from SNS nerve fibers into primary 
and secondary lymphoid organs (Johnson, 2005; 
Kenney, 2014), other major organ systems (e.g., the 
vascular system and perivascular tissues), and many 
peripheral tissues in which pro-inflammatory reac-
tions occur. SNS nerve fibers can also stimulate the 
adrenal glands to release stored adrenaline (AD) into 
the systemic circulation. Both of these neurome-
diators can enhance IL-1β and IL-6 responses and 
gene expression (Eisenberger, 2012). Stimulation of 
both α-adrenergic and β-adrenergic receptors ac-
tivates inflammatory signaling pathways, including 
the NF-κB pathway (Bierhaus, 2003).

On the contrary, the parasympathetic nervous sys-
tem (PNS) may play a role in autonomic regulation 
of inflammation. For example, studies have shown 
that stimulation of efferent vagus nerve fibers can 
inhibit cytokine responses to endotoxin in laboratory 
animals (Pavlov, 2005; Czurua, 2003). These effects 
are mediated in part by the release of acetylcholine, 
which inhibits NF-κB activation when bound to the 
α7 nicotinic acetylcholine receptor (Pavlov, 2005). 
In humans, heart rate variability in young adults is 
strongly and inversely related to IL-6 and CRP, con-
sistent with the finding in animals that increased 
inflammatory markers (e.g., CRP and IL-6) are as-
sociated with decreased parasympathetic activity, 
supporting the notion that the inhibitory effects of 
PNS activity on innate immune responses extend to 
humans (Sloan, 2007). 

On the other hand, activation of the Nod-like re-
ceptor pyrin-containing 3 (NLRP3) inflammasome 
appears to bridge the gap between exposure to 
stress and immune activation. Preclinical and clin-
ical studies have demonstrated a link between the 
assembly of the NLRP3 complex and subsequent 
proteolysis, leading to the release of the pro-inflam-
matory cytokines IL-1β and interleukin 18 (IL-18) 

in chronic stress models and in patients with MDD 
(Kaufmann, 2017).  

PATHOGENESIS OF MDD CAUSED BY 
PRO-INFLAMMATORY CYTOKINES

The peripheral immune system can influence the 
brain and behavior through various communica-
tion pathways or mechanisms. It remains unclear 
whether activation of inflammatory pathways in 
the CNS during depression originate primarily in 
the periphery, CNS, or both, and whether stress 
or other processes directly induce inflammation 
responses within the brain. Indeed, peripheral cy-
tokines are hydrophilic and it seems to be difficult 
for them to pass their signal to the brain because 
of their relatively high molecular weight. However, 
several communication pathways between the pe-
riphery and the brain have been postulated, includ-
ing (1) passage through leaky regions in the BBB in 
the circumventricular organs (Katsuura, 1990; Es-
posito, 2001; Pan, 2003; Menard, 2017); (2) active 
uptake of cytokines across the BBB (Banks, 1995, 
2002, 2010); and (3) local actions at peripheral 
afferent nerve fibers (e.g., vagus nerve) that relay 
cytokine signals to relevant brain regions, including 
the nucleus of the solitary tract and hypothala-
mus (Dantzer, 2008; Miller, 2009). Furthermore, (4) 
peripheral monocytes are recruited into the brain 
by CC-chemokine ligand 2 (CCL2; also known as 
MCP-1), which is produced by microglia when the 
brain is stimulated by pro-inflammatory cytokines, 
notably TNF-α (D’Mello, 2009, 2015). At the same 
time, cytokine-stimulated astrocytes may also be 
major producers of chemokines such as CCL2 and 
CXC-chemokine ligand 1 (CXCL1), which attract 
immune cells to the brain (Hennessy, 2015). The 
monocytes traffic to the brain in the context of so-
cial defeat stress, inducing depressive and anxiety 
behaviors, whereby monocytes coalesce in several 
regions of the brain (e.g., amygdala) associated 
with the detection of threat (Hodes, 2014; Wohleb, 
2011, 2012, 2014). Blockade of monocyte infil-
tration into the brain using antibodies specific for 
the adhesion molecules P-selectin and α4 integrin 
abrogated depression-like behavior in an animal 
model (D’Mello, 2009). These monocytes traffics 
primarily to perivascular and meningeal spaces, 
leading to activation of endothelial cells responsible 
for the subsequent release of second messengers 
(e.g., prostaglandin E2 and nitric oxide) that act on 
specific brain targets (Capuron, 2011). 
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The peripheral inflammatory system can affect the 
CNS, which leads to MDD. Once cytokine signals 
reach the brain, they can interact with virtually every 
pathophysiologic domain relevant to mood regula-
tion. These include effects on neurotransmitter func-
tion, hypothalamic–pituitary–adrenal (HPA) activity, 
neural plasticity, and alteration of neurocircuitry. Of 
note, stress-induced activation of the cytokine re-
sponse in the CNS appears to be largely dependent 
on the activation of microglia (Frank, 2007) (Figure 
1). CCL2 released by astrocytes and endothelial cells 
primes microglia to produce IL-1β and TNF-α. On the 
other hand, IL-6 is known to participate in neurogen-
esis (influencing both neurons and glia cells) and re-

sponses by mature neurons and glial cells under nor-
mal conditions. IL-6R is restricted to some tissues, 
while gp130 is ubiquitous. sIL-6R, which is formed 
physiologically, can bind both IL-6 and gp130. This 
is followed by signaling in cells with or without en-
dogenous IL-6R expression, a mechanism known as 
trans-signaling pathway (Jones, 2001). Inhibition of 
the IL-6 trans-signaling pathway in the brain facili-
tates recovery from LPS-induced sickness behavior 
(Burton, 2011). The IL-6 signal is transduced to mi-
croglia through trans-signaling to change expression 
of IL-6, IL-1β, and IL-10 (Garner, 2018), suggesting 
that trans-signaling pathway is involved in the onset 
of MDD (Yamasaki, 2019).

Figure 1.  Effects of cytokines on neurotransmitter function
Pro-inflammatory cytokines including interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), interferon 
α (IFN-α), and IFN-γ can activate indoleamine 2,3-dioxygenase (IDO), which is a rate-limiting enzyme in tryp-
tophan metabolism. Tryptophan is the primary precursor of serotonin. When tryptophan is metabolized to 
kynurenine (KYN), biosynthesis of serotonin is decreased. The IL-6 signal transduced to microglia through 
trans-signaling changes the expression of IL-6, IL-1β, and IL-10. Pro-inflammatory cytokines also decrease 
levels of tetrahydrobiopterin (BH4), enzymatic cofactors for monoamine synthesis, which is highly sensitive to 
cytokine-induced reactive nitrogen species (RNS) and reactive oxygen species (ROS). In addition, pro-inflam-
matory cytokines can induce production of nitric oxide (NO) by NO synthase (NOS) from L-arginine (L-Arg). This 
process can usurp available BH4, resulting in decreased DA and NA availability. Cytokines also activate p38 
mitogen-activated protein kinase (p38 MAPK), thereby increasing the expression and function of the presyn-
aptic transporters for 5-HT, DA, and NA. BH2, dihydrobiopterin; BH4, tetrahydrobiopterin; DA, dopamine; DAT, 
dopamine transporter; 5-HT, serotonin; IDO, indoleamine 2,3-dioxygenase; KYN, kynurenine; L-Arg, L-arginine; 
L-Cit, L-citrulline; NA, noradrenaline; NAT, noradrenaline transporter; NO, nitric oxide; NOS, NO synthase; 
p38MARK, p38 mitogen-activated protein kinase; RNS, reactive nitrogen species; ROS, reactive oxygen spe-
cies; SERT, serotonin transporter; sIL-6R, soluble interleukin 6 receptor; Trp, tryptophan.
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EFFECTS OF CYTOKINES ON 
NEUROTRANSMITTER FUNCTION

Once cytokine signals reach the brain, microglia 
are activated. This activation initiates an inflamma-
tory cascade whereby release of relevant cytokines, 
chemokines, inflammatory mediators, and reactive 
nitrogen and oxygen species (RNS and ROS, respec-
tively) induces activation of astrocytes, thereby am-
plifying inflammatory signals within the CNS (Miller, 
2009). Pro-inflammatory cytokines including IL-1β, 
IL-6, and TNF-α, as well as interferon α (IFN-α) and 
IFN-γ from T cells, induce indoleamine 2,3-dioxygen-
ase (IDO), which metabolizes tryptophan, the primary 
amino acid precursor of 5-HT, into kynurenine (KYN). 
This process results in decreased 5-HT synthesis 
(Capuron, 2002, 2003). Several studies have doc-
umented that activation of IDO in the brain plays a 
critical role in the development of depression-like 
behavior in rodents (Lestage, 2002; O’Connor, 2009). 
In addition, cytokines activate p38 mitogen-acti-
vated protein kinase (p38 MAPK), which strongly 
upregulates the expression of presynaptic mem-
brane reuptake pumps (transporters) for 5-HT, NA, 
and dopamine (DA) (Zhu, 2005, 2006). On the other 
hand, cytokine-induced increases in inducible nitric 
oxide synthases (NOS) activity can usurp available 
5,6,7,8-tetrahydrobiopterin (BH4), which is a cofactor 
for several aromatic amino acid hydroxylases and 
thus strongly involved in the biosynthesis of 5-HT, 
DA, and NA. Tyrosine hydroxylase is the rate-limiting 
enzyme in DA synthesis and Tyrosine hydroxylase 
leads to lower DA and NA availability (Cunnington, 
2010; Xia, 1998). Furthermore, cytokines trigger high 
output of RNS and ROS by microglia, which can de-
stroy oxidation-labile BH4. Oxidative loss of BH4 in 
chronic inflammatory conditions can reduce the bio-
synthesis of catecholamines, which may be related 
to disturbed adrenergic neurotransmitter pathways in 
patients (Neurauter, 2008).

EFFECTS OF CYTOKINES ON THE HPA AXIS
Some of the effects of cytokines on mechanisms 

relevant to MDD involve the HPA axis (Besedovsky, 
1996), which plays a pivotal role in stress responses 
in mammals. In the HPA, stress promotes the secre-
tion of corticotropin-releasing hormone (CRH) from 
the hypothalamus. CRH promotes the secretion of 
adrenocorticotropic hormone (ACTH) from the ante-
rior pituitary. ACTH promotes the secretion of gluco-
corticoids (GCs) from the adrenal gland, which leads 
to higher GC levels in the blood and CSF. Elevated 

GC levels suppress the secretion of CRH via GC re-
ceptors (GRs) in the hippocampus, which is known 
as the negative feedback loop in the HPA axis. One 
pathway by which cytokines may influence HPA axis 
function is by impairing this negative feedback reg-
ulation, leading to decreased responsiveness to GC, 
that is, GC resistance. GC resistance is manifested 
by reduced sensitivity to the inhibitory effects of 
dexamethasone (DEX) on the production of ACTH 
and GCs during the DEX suppression test and the 
DEX-CRH test (Pariante, 2001). This GC resistance 
is mediated, in part, by alterations in GRs (Pariante, 
2001). Cytokine activation of relevant inflammatory 
signaling molecules, including NF-κB, p38 MAPK, 
and signal transducer and activator of transcrip-
tion 5 (STAT5), inhibit GRs through disruption of GR 
translocation from the cytoplasm to the nucleus, as 
well as through nuclear protein–protein interactions 
that inhibit GR-DNA binding (Pace, 2007). These 
interactions lead to higher GC levels and reduced 
neural plasticity, causing MDD (Sigalas, 2012). Cyto-
kine-induced activation of IDO may also be involved 
in the attenuation of negative feedback inhibition of 
circulating GCs in the HPA axis through the produc-
tion of quinolinic acid (QUIN), which is hypothesized 
to cause hippocampal atrophy and GR loss (Wichers, 
2004).

EFFECTS OF CYTOKINES ON NEURAL 
PLASTICITY

Neural plasticity is believed to play a fundamen-
tal role in the maintenance of neural integrity, which 
includes neurogenesis, long-term potentiation, and 
dendritic sprouting. Especially in the hippocampus, 
reduced neurogenesis in the adult dentate gyrus 
(Gould, 1992; Cameron, 1993) is a hallmark of chron-
ic exposure to stress in laboratory animals (Duman, 
2006). Cytokines, including IL-6, TNF-α, and IL-1β, 
can activate microglia to convert KYN into QUIN, a 
potent N-methyl-d-aspartate receptor (NMDAR) ag-
onist and stimulator of glutamate (Glu) release from 
astrocytes (Müller, 2007). Multiple astrocyte func-
tions are also compromised by excessive exposure 
to QUIN and cytokines, which ultimately leads to 
downregulation of Glu transporters and impaired Glu 
reuptake. This, in turn, can lead to excessive Glu. 
Of note, Glu released by astrocytes has preferential 
access to extrasynaptic NMDARs, which mediate 
excitotoxicity and decreased production of trophic 
factors including BDNF, ultimately disrupting neu-
ral plasticity through excitotoxicity and apoptosis 
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and leading to depression (Harry, 2012; Hashimoto, 
2013; Hardingham, 2002, 2010) (Figure. 2). 

On the other hand, several studies have shown 
that blockade of IL-1β through the administration 
of IL-1ra, transplantation of IL-1ra–secreting neural 
precursor cells, or IL-1 knockout in mice, reverses 
the decrease in BDNF production and neurogenesis 
associated with chronic stress while also revers-

ing stress-induced behavioral changes (Ben Men-
achem-Zidon, 2008; Goshen, 2008; Koo, 2008). 

Cytokines can also lead to the release of RNS and 
ROS from microglia and astrocytes, which, in combi-
nation with QUIN, amplify oxidative stress and further 
endanger neurons and oligodendrocytes, which are 
especially vulnerable to oxidative damage (Schwarcz, 
2002; Rios, 1991; Gavillet, 2008; Matute, 2006; 

Figure 2.  Effects of cytokines on neural plasticity 
Pro-inflammatory cytokines, including interleukin 6 (IL-6), tumor necrosis factor 
α (TNF-α), and IL-1, can activate microglia to convert kynurenine (KYN) into 
quinolinic acid (QUIN), which is a potent N-methyl-d-aspartate (NMDA) recep-
tor agonist and stimulator of glutamate release from astrocytes. QUIN, together 
with cytokines, downregulate glutamate transporters and impair glutamate 
reuptake by astrocytes, which in turn can lead to excessive glutamate. Gluta-
mate released by astrocytes has preferential access to extrasynaptic NMDA 
receptors (NMDARs), which mediate excitotoxicity and decreased production 
of trophic factors including brain-derived neurotrophic factor (BDNF). This ulti-
mately disrupts neural plasticity through excitotoxicity and apoptosis, affecting 
neurogenesis, long-term potentiation, and dendritic sprouting. Cytokines can 
also induce RNS/ROS release from microglia and astrocytes, which amplify 
oxidative stress in combination with QUIN, further endangering neurons and 
oligodendrocytes, which are especially vulnerable to oxidative damage. BDNF, 
brain-derived neurotrophic factor; Glu, glutamate; KYN, kynurenine; NMDAR, 
N-methyl-d-aspartate receptor; QUIN, quinolinic acid; RNS, reactive nitrogen 
species; ROS, reactive oxygen species. 
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McTigue, 2008; Ida, 2008; Buntinx, 2004; Li, 2008; 
Thornton, 2006).

CYTOKINE EFFECT ON NEUROCIRCUITRY
Functional magnetic resonance imaging (fMRI) 

studies have demonstrated that increased activation 
of threat-related and anxiety-related neurocircuitry, 
which includes the dACC, insula, and amygdala, is 
associated with increased inflammation. For example, 
the dACC is significantly activated in patients receiv-
ing IFN-α for hepatitis C treatment compared with 
control subjects not receiving IFN-α (Capuron, 2005). 
These data are consistent with the fact that positron 
emission tomography using N-(2-(2-fluoroethoxy)ben-
zyl)-N-(4-phenoxypyridin-3-yl)acetamide labeled with 
18F–([18FF]FEPPA), which binds to the translocator pro-
tein (TSPO), has revealed that microglia are  activat-
ed particularly in the prefrontal cortex (PFC), insula, 
and ACC. Increased TSPO distribution volume in the 
ACC is correlated with depression severity (Setiawan, 
2015). TSPO is an 18-kDa protein located on the out-
er mitochondrial membrane in microglia. Increased 
TSPO expression occurs when microglia are activat-
ed during neuroinflammation. 

On the other hand, depression is recognized to be 
a multi-componential disorder (Caligiuri, 2000; Mor-
rens, 2007; Pizzagalli, 2014; Zald, 2017). Inability to 
experience pleasure or reward (anhedonia) is one of 
the core symptoms of depression (Ebmeier, 2006). 
Wanting, liking, and learning have been identified as 
three important dissociable components of reward 
(Berridge, 2009). In particular, wanting and learning 
have been linked to dopaminergic neurotransmis-
sion in the reward network consisting of the ventral 
striatum in the basal ganglia (Knutson, 2001; Schott, 
2008). Numerous neuroimaging studies have identi-
fied that disruption of the basal ganglia is an import-
ant action of cytokines. Increased DA uptake and de-
creased DA turnover in the ventral striatum, caudate, 
and putamen were demonstrated in a positron emis-
sion tomography (PET) study of patients with hepati-
tis C virus (HCV) infection treated with IFN-α using [18F]
fluorodopa (Capuron, 2012). These findings were as-
sociated with decreased effort-based motivation and 
lower activation of reward circuitry in the basal gan-
glia (Capuron, 2012; Eisenberger, 2010; Felger, 2013). 
In the first study to examine the functional effects of 
IFN-α on the brain, in addition to the decreased me-
tabolism in the PFC, increased glucose metabolism 
was found in the basal ganglia, particularly in the DA-
rich putamen (Juengling, 2000), as assessed by PET 

neuroimaging with fluorine-18–labeled fluorodeox-
yglucose (FDG). Next, fMRI also demonstrated that 
inflammatory stimuli are associated with lower reward 
responsiveness in the basal ganglia, including the 
ventral striatum, in otherwise non-depressed patients 
with HCV infection undergoing IFN-α therapy (Reuter, 
2005). Administration of cytokine-inducing endotoxin 
or typhoid vaccination to healthy volunteers produces 
similar effects on the ventral striatum in response to 
rewarding stimuli (Eisenberger, 2010; Harrison, 2015). 
Typhoid vaccination compared with normal saline pla-
cebo has been shown to activate the subgenual ACC 
(sgACC), a brain region implicated in depression, 
and decrease connectivity of the sgACC with the 
ventral striatum, an effect modulated by plasma IL-6 
(Harrison, 2009a). These fMRI findings have been ex-
tended to patients with depression whose increased 
plasma CRP and cytokine levels are associated with 
decreased functional connectivity within the reward 
circuitry, including the ventral striatum and the ven-
tromedial PFC (vmPFC), which in turn are correlated 
with increased symptoms of anhedonia (Felger, 2016).

CONCLUSION
Over the past three decades, an intricate interac-

tion among immune activation, release of pro-inflam-
matory cytokines, and changes in multi-layered as-
pects of brain function related to mood and behavior 
has been described. Despite extensive efforts, ques-
tions regarding when and how inflammation becomes 
detrimental remain to be answered. Such incomplete 
understanding likely arises from the fact that MDD 
encompasses multiple etiologies and has a highly 
variable course, inconsistent response to treatment, 
and no established mechanisms. 

In this review, we have attempted to outline the 
pathophysiological pathways from causes like social 
stress to MDD that involve peripheral inflammation 
and neuroinflammation. A latency of response to 
currently used antidepressants and cases that are re-
fractory to antidepressants are issues with the mono-
amine hypothesis that may be explained at least in 
part by the effects of cytokines, i.e., the involvement 
of reduced monoamine synthesis following activation 
of IDO and decreases in BH4, increased expression 
of transporters after p38 MARK activation, reduced 
neural plasticity due to GC resistance, excitotoxicity 
due to increased QUIN and excessive Glu binding 
to the extrasynaptic NMDARs in combination with 
RNS and ROS, and decreased production of trophic 
factors including BDNF. On the other hand, the mo-
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lecular basis of relationships between the alteration 
of neurocircuitry and the effect of cytokines remained 
to be clarified. Currently, data support the hypothesis 
that the effect of cytokines on neurocircuitry including 
the dACC, insula, and amygdala may lead to threat 
and anxiety and that the effects of cytokines on do-
paminergic pathways may lead to functional conse-
quences on reward circuitry associated with funda-
mental alterations in motivation, which contribute to 
symptoms of anhedonia. 

Importantly, only some subgroups of patients with 
depression have higher levels of inflammatory mark-
ers. Anti-inflammatory treatments in patients with-
out inflammation may be detrimental, because TNF 
blockade with infliximab in patients with lower levels 
of inflammation impaired the placebo response (Rai-
son, 2013). Thus, not all types of depression might be 
linked to inflammation (Raison, 2013).

Nevertheless, given the strong need for novel 
therapeutics based on the high rates of treatment 
resistance across disorders, studies identifying pre-
cise targets for reversing the effects of inflammation 
are needed. Research on how inflammation affects 
neurotransmitter function, neuroendocrine activity 
(e.g., HPA axis), neural plasticity, and alteration in 
neurocircuitry or other unknown aspects, should be 
continued. Strategies to prevent depression are also 
needed. 
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